Materialeffizienz in der niederösterreichischen Wirtschaft
Materialeffizienz in der niederösterreichischen Wirtschaft

Raimund Alt, Helmut Berrer, Christian Helmenstein

Februar 2012

Studie im Auftrag der

Economica Institut für Wirtschaftsforschung
Economica Institute of Economic Research
Kontakt:

Dr. Christian Helmenstein
Economica Institut für Wirtschaftsforschung
Schottenfeldgasse 29
1070 Wien, Österreich
☎: +43 / 676 / 3200-400
☎: +43 / 676 / 3200-401
E-Mail: christian.helmenstein@economica.at
Inhaltsverzeichnis

1 Einleitung ... 1
2 Gegenstand der Studie ... 4
3 Preisentwicklung bei Rohstoffen ... 6
4 Materialeffizienz – Hindernisse ... 10
5 Materialeffizienz: Perzeption, Verfahren und Potenziale ... 12
 5.1 Wahrnehmung der Materialeffizienz bei Unternehmen ... 12
 5.2 Verfahren der Materialeffizienz ... 13
 5.2.1 Design-to-Cost ... 14
 5.2.2 Finite-Elemente-Methode ... 18
 5.3 Ergebnisse einer Branchen-Potenzialanalyse für KMU in Deutschland ... 21
6 Good-Practice-Beispiele ... 23
 6.1 Chemie ... 23
 6.2 Holz ... 23
 6.3 Maschinen und Metall ... 23
 6.4 Nahrungsmittel ... 25
7 Volkswirtschaftliche Materialflussrechnung und Materialeffizienz ... 26
8 Bilanzdaten und Materialeffizienz ... 28
 8.1 Berücksichtigung von Fremdleistungen ... 28
 8.2 Analyse einzelner Branchen ... 31
 8.2.1 Chemie ... 31
 8.2.2 Holz ... 34
 8.2.3 Maschinenbau ... 36
 8.2.4 Metall ... 39
 8.2.5 Nahrungsmittel ... 41
 8.2.6 Textilien ... 44
 8.3 Zusammenfassung der Branchenanalysen ... 46
9 Maßnahmenvorschläge für ein Materialeffizienzprogramm ... 51
10 Zusammenfassung ... 54
11 Literatur ... 59
Anhang: Beispiele von Internet-Tools ... 61
1 Einleitung

Jenseits der gegenwärtigen Wirtschaftskrise kündigt sich eine neue makroökonomische Normalität japanischer Prägung für die Eurozone an. Wenn die Schätzung der Europäischen Kommission zutrifft, wird sich das Potenzialwachstum von zuvor rund zwei Prozent auf lediglich noch ein Prozent pro Jahr während der kommenden fünf Jahre halbieren. Gesucht sind daher erfolgreiche wirtschaftspolitische Gegenmaßnahmen, um deprimierend hohe und noch weiter zunehmende Arbeitslosenquoten ebenso wie eine dramatisch wachsende Staatsverschuldung auf Werte jenseits der 100 %-Marke (im Durchschnitt der Mitgliedstaaten) nicht Realität werden zu lassen.

Wege zur Überwindung eines solchen Szenarios einer erneut drohenden Eurosclerose können auf der Ebene der makroökonomischen Globalsteuerung aber kaum gefunden werden: das geldpolitische Maßnahmenarsenal ist ausgereizt, der fiskalpolitische Handlungsspielraum bereits überzogen. Der Prozess der institutionellen Integration ist weitestgehend abgeschlossen, der allfällige Einsatz handelspolitischer Instrumente würde die Krise noch verschlimmern.

Der erste Superzyklus bezieht sich auf die Erzeugung von und Versorgung mit Nahrungsmitteln. In jeder Sekunde wächst die Weltbevölkerung um drei Bewohner. Dies ist, wohlgemerkt, der Nettozuwachs – die Geburtenzahl liegt noch weit darüber. Das heißt, in jedem einzelnen Monat nimmt die Weltbevölkerung in einem Ausmaß zu, welches der Bevölkerungsgröße Österreichs entspricht. Das macht derzeit rund 91 Millionen zusätzliche
Bewohner pro Jahr, die allesamt – ob globale Rezession oder nicht – Nahrung und viele weitere Ressourcen für ein menschenwürdiges Leben benötigen.

Tabelle 1: Kostenstruktur des verarbeitenden Gewerbes (Deutschland, 2004-2007)

<table>
<thead>
<tr>
<th>Kostenkomponenten</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material (ohne Energie)</td>
<td>41,1</td>
<td>42,0</td>
<td>43,0</td>
<td>44,3</td>
</tr>
<tr>
<td>Personal</td>
<td>20,0</td>
<td>19,1</td>
<td>18,1</td>
<td>17,3</td>
</tr>
<tr>
<td>Handelswaren</td>
<td>11,5</td>
<td>12,0</td>
<td>11,7</td>
<td>10,9</td>
</tr>
<tr>
<td>Kostensteuern</td>
<td>3,5</td>
<td>3,5</td>
<td>3,4</td>
<td>3,1</td>
</tr>
<tr>
<td>Abschreibungen</td>
<td>3,0</td>
<td>2,9</td>
<td>2,8</td>
<td>2,7</td>
</tr>
<tr>
<td>Lohnarbeiten</td>
<td>2,4</td>
<td>2,3</td>
<td>2,4</td>
<td>2,4</td>
</tr>
<tr>
<td>Energie</td>
<td>1,6</td>
<td>1,7</td>
<td>1,8</td>
<td>1,6</td>
</tr>
<tr>
<td>Dienstleistungen</td>
<td>1,8</td>
<td>1,6</td>
<td>1,6</td>
<td>1,6</td>
</tr>
<tr>
<td>Mieten, Pacht</td>
<td>1,5</td>
<td>1,5</td>
<td>1,4</td>
<td>1,4</td>
</tr>
<tr>
<td>Sonstiges</td>
<td>13,6</td>
<td>13,4</td>
<td>13,8</td>
<td>14,5</td>
</tr>
</tbody>
</table>

Geht man von einer ähnlichen Situation in Österreich aus, so ist bei einer durchschnittlichen Materialkostenquote in der Industrie von über 40% zu vermuten, dass bei dieser Kostenkomponente enorme Einsparpotenziale und damit auch Chancen zur Erhöhung der Wettbewerbsfähigkeit der niederösterreichischen Industrie noch ungenützt sind. Diese Einschätzung wird insofern noch weiter untermauert, als die Materialkosten aufgrund einer über lange Jahre hinweg günstigen Rohstoffpreisentwicklung in den meisten Unternehmen nicht annähernd so stark wie die ständig zunehmenden Personalkosten optimiert wurden.

Vor dem Hintergrund der in globaler Perspektive stark wachsenden Rohstoffnachfrage ist die Ära stagnierender oder gar sinkender Rohstoffpreise vorüber, sodass zukünftig neben den Lohnstückkosten in zunehmendem Maße auch die Materialstückkosten von ausschlaggebender Bedeutung für die preisliche Wettbewerbsfähigkeit niederösterreichischer Produkte sein werden.
2 Gegenstand der Studie

Die forschungsleitenden Fragestellungen lauten dementsprechend:

(a) Welche Optimierungspotenziale bestehen hinsichtlich des innerbetrieblichen Materialeinsatzes in Bezug auf die Bindung von Liquidität? Als empirische Untersuchungsgrößen werden dazu die Vorratsquoten nach Branchen und regionaler Gliederung gegenübergestellt.

(b) Welche Optimierungspotenziale bestehen hinsichtlich der Materialeffizienz? In der volkswirtschaftlichen Materialflussrechnung versteht man darunter, wie viele BIP-Einheiten je Materialeinheit erzeugt werden können. Eine Verringerung des Materialinputs bewirkt somit eine Erhöhung der Materialeffizienz.

(c) Welche standortpolitischen Maßnahmen lassen sich aus den Befunden gemäß (a) und (b) ableiten?

Im Fokus der Studie stehen die Branchen Maschinenbau, Stahlbau- und Metallwarenindustrie. Darüber hinaus werden die Branchen Chemie, Holz, Nahrungs- und Genussmittel sowie Textilien/Bekleidung berücksichtigt.

Zur Analyse der aufgeworfenen Fragestellungen werden branchenbezogene Bilanzdaten niederösterreichischer und österreichischer Unternehmen der KMU Forschung Austria herangezogen. Das Untersuchungsdesign für die unter (a) ausgewiesene Fragestellung stellt damit ebenso wie die Umsetzung von (b) die quantitative Analyse in den Mittelpunkt. Es wird angestrebt, Optimierungspotenziale mittels horizontaler (Niederösterreich versus Österreich) und vertikaler (Zeitdimension) Benchmarks sowohl festzustellen als auch zumindest partiell zu beziffern.

In kategorialer Hinsicht ist zu vermuten, dass das Einsparungspotenzial mit der Unternehmensgröße negativ korreliert, das heißt, mit zunehmender Unternehmensgröße sollte das relative, wenngleich nicht das absolute, Einsparpotenzial abnehmen. Dies ist auf verschiedene Gründe wie Personalknappheit und fehlendes Know-how gerade in Kleinbetrieben zurückzuführen. So weist etwa die SWOT-Analyse des operationellen Programms zum Phasing-Out der EU-Förderungen für das Burgenland darauf hin, dass bis dato
„insbesondere in Kleinst- und Kleinbetrieben (...) ein geringes Qualifikationsniveau bei gleichzeitig geringer Bildungsbereitschaft zu verzeichnen [war].“

Aufbauend auf den im Rahmen der Punkte (a) und (b) gewonnenen Erkenntnissen soll unter Punkt (c) ein konkretes Maßnahmenprogramm für die niederösterreichische Industrie entwickelt werden, welches auch die argumentative Grundlage für ein Materialeffizienz-(ausbildungs-)programm enthalten soll.

3 Preisentwicklung bei Rohstoffen

Abbildung 1: Ausgewählte Metallpreisindizes

MPI und CRB Metals Subindex

Quelle: Bundesanstalt für Geowissenschaften und Rohstoffe

1 Börsennotierte Rohstoffindizes bilden die Belastung rohstoffpreissensibler Unternehmen nur unzureichend ab, da sie nicht am für die deutsche Wirtschaft typischen Metalleinsatz ausgerichtet werden. Daher errechnet die Rohstoffberatung der BGR (deutsche Bundesanstalt für Geowissenschaften und Rohstoffe) ab November 2007.

Tabelle 2: Preisanstieg bei ausgewählten Metallen, 2001-2005

<table>
<thead>
<tr>
<th>Rohstoff</th>
<th>Anwendungsgebiet</th>
<th>Preis 2001</th>
<th>Preis 2005</th>
<th>Anstieg in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indium</td>
<td>LCD-Flachbildschirme, Semikonduktoren</td>
<td>120,0</td>
<td>810,0</td>
<td>575 %</td>
</tr>
<tr>
<td>Kupfer</td>
<td>Baubereich, Elektronik, Verkehrswesen</td>
<td>71,6</td>
<td>165,0</td>
<td>130 %</td>
</tr>
<tr>
<td>Molybdän</td>
<td>Stahlerzeugung</td>
<td>5,0</td>
<td>72,0</td>
<td>1.340 %</td>
</tr>
<tr>
<td>Platin</td>
<td>Katalysatoren</td>
<td>533,0</td>
<td>890,0</td>
<td>66 %</td>
</tr>
<tr>
<td>Selen</td>
<td>Glas, Chemie, Elektronik</td>
<td>3,8</td>
<td>52,0</td>
<td>1.268 %</td>
</tr>
<tr>
<td>Tellur</td>
<td>Stahlerzeugung</td>
<td>7,0</td>
<td>96,0</td>
<td>1.271 %</td>
</tr>
<tr>
<td>Vanadium</td>
<td>Petrochemie, Metallwirtschaft</td>
<td>1,4</td>
<td>17,5</td>
<td>1.177 %</td>
</tr>
<tr>
<td>Wolfram</td>
<td>Elektronik</td>
<td>64,0</td>
<td>140,0</td>
<td>118 %</td>
</tr>
<tr>
<td>Zirkon</td>
<td>Keramik, Chemie</td>
<td>340,0</td>
<td>662,0</td>
<td>95 %</td>
</tr>
</tbody>
</table>

Preisangaben in US-Dollar, bezogen auf spezifisch relevante Mengen.

Betrachtet man z.B. den HWWI-Rohstoffpreisindex (Hamburgisches WeltWirtschaftsInstitut) über die vergangenen fünf Jahre (Abbildung 2), so lässt sich, neben den Preissteigerungen, eine verstärkte Korrelation zwischen den einzelnen Rohstoffklassen feststellen. Dies impliziert zusätzlich eine Einschränkung bei allfälligen Substitutionsmöglichkeiten.

Die folgende Tabelle zeigt die statische Reichweite ausgewählter Rohstoffe. Dabei fällt besonders auf, dass die statische Reichweite einiger Metalle (Gold, Zink, Blei, Kupfer) und Industriemineralien (Strontium-Minerale, Baryt) niedriger ist als diejenige von Erdöl, ohne dass dies bis dato besondere wirtschaftspolitische oder mediale Beachtung gefunden hätte. Allerdings ist zu berücksichtigen, dass die statische Reichweite keinen besonders geeigneten Indikator für die absolute Knappheit eines Rohstoffs darstellt. Es ist jedoch damit zu rechnen, dass die Erschließung neuer bzw. bisher ungenutzter Lagerstätten in Zukunft einen deutlich höheren Aufwand erforderlich machen wird. Als naheliegende Konsequenz ergibt sich daraus, dass, neben dem Energiesparen, der Fokus künftig verstärkt auf die „Materialersparnis“ gerichtet werden sollte.

Abbildung 3: Statische Reichweite von ausgewählten Rohstoffen (in Jahren)

4 Materialeffizienz – Hindernisse

Eine zentrale Frage im Hinblick auf Maßnahmen zur Erhöhung der Materialeffizienz in KMUs ist die nach dem möglichen Einsparungspotenzial, das man sich von derartigen Maßnahmen erwarten kann. In kategorialer Hinsicht ist zu vermuten, dass das Einsparungspotenzial mit der Unternehmensgröße negativ korreliert, das heißt mit zunehmender Unternehmensgröße sollte das relative, wenngleich nicht das absolute, Einsparungspotenzial abnehmen. Bei Großunternehmen wird die Bedeutung der Materialeffizienz als Wettbewerbsfaktor im Allgemeinen seit langem adressiert, schon aufgrund einer entsprechend spezialisierten Humankapitalausstattung und zum Teil auch korrespondierender Forschungs- und Entwicklungskapazitäten.

Bei KMUs stellen sich die Verhältnisse weit überwiegend anders dar. Einen Hinweis auf die Schwierigkeiten, mit denen eine Materialeffizienz-Kampagne bei KMUs konfrontiert ist, gibt die SWOT-Analyse des operationellen Programms zum Phasing-Out der EU-Förderungen für das Burgenland. Dort heißt es, dass bis dato „insbesondere in Kleinst- und Kleinbetrieben (...) ein geringes Qualifikationsniveau bei gleichzeitig geringer Bildungsbereitschaft zu verzeichnen [war]“. Dies weist darauf hin, dass Maßnahmen zur Steigerung der Materialeffizienz bei KMUs insbesondere bei der Ausbildung der Beschäftigten sowie bei der Beratung über Einsparpotenziale ansetzen sollten.

Was sind die eigentlichen Hindernisse oder Hemmnisse für die Einführung von Materialeffizienz-Maßnahmen in KMUs? Von Seiten der Unternehmen wird hierzu eine Reihe von Schwierigkeiten und Befürchten vorgebracht (Wied und Brüggemann (2009), Blaeser-Benfer (2010)):

- Zeitmangel und/oder Personalmangel im Alltagsgeschäft
- Fehlendes Wissen über Materialeffizienz (einschließlich unzureichendem Problembewusstsein)
- Vorbehalte wegen des Zeit- und Organisationsaufwandes
- Hohe Investitionskosten bei beschränkter Kapitalverfügbarkeit
- Unsicherheit über die Amortisationszeiten der Maßnahmen.

(2010) erwähnt dies etwa im Zusammenhang mit Befürchtungen im Hinblick auf den Organisationsaufwand, das Wissen über Materialeffizienz, den Investitionsaufwand sowie die Amortisationszeiten.

ADL et al. (2005) fassen im Rahmen ihrer Studie die Gründe für diverse Schwierigkeiten zusammen, die ihrer Ansicht nach einer Einführung von Materialeffizienz-Maßnahmen entgegenstehen. Diese ergeben sich teilweise aus einem etwas erweiterten Blickwinkel, der auch die öffentliche Hand bzw. die Öffentlichkeit inkludiert:

• Mangelnde Managementressourcen im Alltagsgeschäft

• Zu langsamer Wissensdiffusion in die mittelständische Wirtschaft bzw. fehlendes Know-how

• Ausgeschöpftes Investitionsbudget

• Unsichere Amortisationsperspektiven investiver Maßnahmen (so geht bei einem unerwarteten Preisverfall die Investitionsrendite verloren)

• Unzureichend belegte Kostensenkungspotenziale für den einzelnen Betrieb

• Aus Gründen der Risikominimierung bestehen Bedenken vor Experimenten im laufenden Produktionsprozess

• Im Gegensatz zu anderen Feldern, wie etwa der Energieeffizienz, bestehen bislang nur wenige Förderanreize

• Anders als Energieeffizienzgewinne müssen Materialeffizienzzuwächse technisch häufig über die gesamte Wertschöpfungskette hinweg abgestimmt werden – etwa bei einer Materialsubstitution oder einer materialsparenden Werkstückauslegung. Die dazu erforderliche Kooperation stößt auf nicht unerhebliche Schwierigkeiten, u.a. weil Zulieferer rigiden Vorgaben ihrer Kunden oder überholten technischen Normen zu entsprechen haben.
5 Materialeffizienz: Perzeption, Verfahren und Potenziale

5.1 Wahrnehmung der Materialeffizienz bei Unternehmen

Im Rahmen einer Panelbefragung\(^3\) unter österreichischen Führungskräften aus Wirtschaft und Forschung zur Entwicklung der Rohstoffverfügbarkeit und der Rohstoffpreise wurde eine Vielzahl möglicher Reaktionen zur Auswahl gestellt. Zwei Reaktionsmuster stechen in besonderer Weise hervor. Einerseits wird eine „No-Change“-/„Weiter-wie-bisher“-Strategie weitestgehend verworfen, andererseits wird eine Strategie, welche auf die Erhöhung der Materialeffizienz (inkl. Prozesseffizienz) setzt, mit großem Abstand favorisiert. Fast 90 % der Respondenten halten eine solche Strategie für „wahrscheinlich“ oder sogar „sehr wahrscheinlich“.

Abbildung 4: RiskPanel: Aktionsfeld Risikomanagement I

\(^3\) RiskPanel der Industriellenvereinigung und der RiskRe Agentur für wirtschaftliche Risikoforschung im Rahmen des StratFüsys-Projektes (KIRAS-Programm) zum 2. Semester 2011, halbjährliche Erhebung, n=70.
5.2 Verfahren der Materialeffizienz

Effizienteres Produktdesign

Auf einen sparsamen Materialeinsatz ist bereits in der Planungs- und Entwicklungsphase von Produkten zu achten. Interessant sind hier etwa Überlegungen, sich stärker an Optimierungslosungen zu orientieren, die an Naturvorgänge angelehnt sind. Auch wenn die Leichtbauweise, bei welcher bei weniger beanspruchten Produktkomponenten gezielt Material eingespart oder selbiges substituiert wird, bisher vorwiegend in der Automobilbranche zum Einsatz kommt, dürften sich Potenziale dafür auch in anderen Branchen bieten, z.B. im Maschinenbau, im Stahlbau, in der Kunststoff- und oder auch bei der Holzverarbeitung (ADL (2005)).

Optimierung der Produktionsvorgänge

Exkurs: Zero-Loss-Methode (ZLM)

Maßnahmenentwicklung. Alle Kostenelemente, die nicht als Endprodukt den Kunden erreichen, werden als Verlust (Loss) verstanden. Sie sind Ziel der Optimierungsanstrengungen.

Neue Werkstoffe

Verbessertes Recycling

5.2.1 *Design-to-Cost*

Die DTC-Methode ist eng mit der *Lebenszykluskosten-Kalkulation* (*Life Cycle Costing, LCC*) verbunden. Unter Lebenszykluskosten versteht man die Summe aller Kosten, die ein
System während seines gesamten 'Lebens' verursacht. Der Begriff „Lebenszyklus“ umfasst dabei alle 'Lebensphasen' von der Initiierung über die Entwicklung, Produktion und Nutzung bis zur Stilllegung und Beseitigung. Die Lebenszykluskosten dienen als Entwurfsparameter für das DTC. Im Maximalfall werden die Teilkosten aller Lebensphasen berücksichtigt, aber je nach Produkt und Zielsetzung bleiben die Teilkosten einzelner Lebensphasen unberücksichtigt. So können z.B. in einem Fall die Herstell- und Entsorgungskosten, in einem anderen die Herstell- und Betriebskosten den Inhalt der Lebenszykluskosten-Kalkulation bilden.

In der praktischen Umsetzung der DTC-Methode lässt sich nicht auf eine einheitliche Aufbauorganisation zurückgreifen, da sich die eingesetzten Organisationsstrukturen projekt- und unternehmensbezogen voneinander unterscheiden. Darüber hinaus kommt der zeitlichen Dimension der Zusammenarbeit der Fachleute aus den unterschiedlichen Disziplinen ebenfalls eine wichtige Bedeutung zu. So kann die Bildung eines DTC-Teams für die Dauer einer Projektabwicklung oder als eigens installierte, feste Organisationseinheit vorgesehen werden, die in Zusammenarbeit mit den relevanten Abteilungen alle Belange der DTC-Methode kontinuierlich bearbeitet.

Aktivitäten so durchgeführt werden, dass bei gleicher Leistung die kostengünstigste Alternative gewählt wird (Franz / Kajüter (2002)).

Im Gegensatz zur Kostenrechnung, die Informationen über die Kostensituation eines Unternehmens bereitstellt, geht es beim Kostenmanagement um die Verwendung dieser Informationen zur Anregung und Fundierung von Entscheidungen über kostenbeeinflussende Maßnahmen (Kajüter (2000)). Neben Informationen aus der Kostenrechnung wird beim Kostenmanagement auch auf andere interne oder externe Daten zurückgegriffen (z.B. Durchlaufzeiten, Kostenbenchmarks von Wettbewerbern).

Abbildung 5: Kostenmanagement

Das Kostenmanagement stellt daher eine

- bewusste,
- systematische und
- gezielte

Beeinflussung der Kosten dar.
Abbildung 6: Festgelegte und tatsächliche Kosten der Unternehmensbereiche

Die anfallenden Kosten stellen gemeinsam mit der Qualität und Funktionalität der Produkte die Eckpunkte der operationalen Sicht dar. Darüber hinaus kommt den Kosten beim Übergang zum Preis des Produktes eine Verbindungsfunktion zur strategischen Ebene zu, die mit den Eckpunkten 'Kunden bzw. Nutzen' und 'Wettbewerb' beschrieben wird.
5.2.2 Finite-Elemente-Methode

Im praktischen Ablauf einer FEM liegt üblicherweise ein 3D CAD-Modell des zu untersuchenden Bauteils bzw. der zu untersuchenden Baugruppe vor, das die geometrischen Verhältnisse exakt beschreibt. Ausgehend von diesem Grundmodell kommt es in einem nachfolgenden Schritt zu einer so bezeichneten Idealisierung, bei der Vereinfachungen (wie z.B. das Entfernen oder Unterdrücken unwesentlicher Details wie Bohrungen oder Fasen) vorgenommen werden. Weiters lässt sich das Berechnungsmodell durch den Einsatz von Symmetrie- oder Antimetriebedingungen des Bauteils reduzieren, wodurch die Aussagen des Vollmodells jedoch beibehalten werden. Man erhält dadurch eine geringere Modellgröße bzw. eine reduzierte Datenbasis, was sich wiederum in wesentlich kürzeren Rechenzeiten niederschlägt.

ergibt sich ein Gleichungssystem, welches vom Solver zu lösen ist und als Ergebnis die gesuchten Größen (Verschiebungen, Spannungen, etc.) ergibt.

Der letzte Schritt einer FEA ist die Auswertung der Berechnungsergebnisse. Dazu werden die berechneten Verschiebungen, Kräfte, Spannungen, etc. in den Pre-/Postprozessor eingelesen und können dort visualisiert werden. Im Ergebnis wird mittels der Finite-Elemente-Methode das Werkstück unter dem Gesichtspunkt des optimierten Material-einsatzes bei gleichzeitiger Einhaltung erforderlicher Eigenschaften auf effizientem Weg entwickelt.

5.3 Ergebnisse einer Branchen-Potenzialanalyse für KMU in Deutschland

Die Studie von ADL et al. (2005) präsentiert auch die Ergebnisse einer Analyse von Materialeffizienz-Potenzialen bei deutschen KMU verschiedener Branchen. Dabei wurden auch Branchen untersucht, die im Rahmen der vorliegenden Studie relevant sind, nämlich die Metall-, die Chemie- und die Holzbranche. Im Folgenden werden die Ergebnisse der drei genannten Branchen zusammengefasst wiedergegeben.

Metall

Da es sich vor allem um gegenüber Innovationen aufgeschlossene Unternehmen handelt, bei denen ein hoher Anteil an Materialkosten entsteht, wird die Herstellung von Metall-
Materialeffizienzpotenziale ergeben sich insgesamt als ein besonders vielversprechender Bereich für die Durchführung von Materialeffizienz-Maßnahmen angesehen.

Chemie

Der durch die Entwicklung von Innovationen erzielte Vorteil wird bei kleineren Unternehmen nicht immer durch Patente abgesichert (u.a. wegen möglicher Patentstreitigkeiten), sondern stattdessen auf eine Beschleunigung der Entwicklungszyklen und eine strikte Geheimhaltungspolitik gesetzt. Diese wirkt sich allerdings nachteilig auf den Wissens- und Erfahrungsaustausch aus.

Materialeffizienzpotenziale ergeben sich z.B. durch moderne Prozessleitsysteme, Automatisierung sowie durch methodische Ansätze wie das Zero-Loss-Management.

Holz

In der Holzverarbeitung und -bearbeitung weisen die Maschinen relativ lange Reinvestitionszyklen auf, Automatisierung ist eher typisch für große Unternehmen. Holzabfälle werden zum Teil thermisch genutzt, zum Teil kompostiert oder für andere Zwecke verwendet. In der Regel werden derzeit die Eigenschaften der Ausgangsmaterialien nicht systematisch erfasst und in den Planungs- und Produktionsprozess integriert.

6 Good-Practice-Beispiele

6.1 Chemie

Wiederaufbereitung von Gummi-Abfällen

6.2 Holz

Verbesserung der Sortiertechnik bei Brettschichtholz

6.3 Maschinen und Metall

Metallverarbeiter in Baden-Württemberg

Ein Metallverarbeiter aus Baden-Württemberg konnte zwei Verlustquellen (hohe Zerspanungsabfälle und hoher Werkzeugverschleiß) durch eine Abänderung des Produktionsprozesses verringern. Dieses Einsparprinzip wurde durch die Verwendung vorgeformter Rohlinge anstatt von Vollmaterial umgesetzt.
Als Ergebnis der Rationalisierungsmaßnahme entstand 50 % weniger Materialabfall, damit einher ging auch ein verringriger Werkzeugverschleiß durch geringere Zerspanungskräfte. Aber nicht nur die Material- und Werkzeugkosten konnten gesenkt werden, denn es gab aufgrund der reduzierten Bearbeitungszeiten auch einen weiteren Effizienzgewinn.

Fasst man alle Kostenpositionen zusammen, so verzeichnete das Unternehmen eine Rentabilitätserhöhung um 13,7 %. (Quelle: Deutsche Materialeffizienzagentur (demea))

Sondermaschinenhersteller in Bayern

Die Verlustquellen eines Sondermaschinenherstellers aus Bayern bestanden hauptsächlich aus konventionellen Maschinenkonstruktionen und fehlerhaften Stücklisten. Um Einsparungen zu erzielen, wurden materialeffiziente Konstruktionen (z.B. durch Leichtbau, stellere Querschnitte) umgesetzt und die Stücklistenpflege exakter betrieben.

Die innerbetrieblichen Maßnahmen, die ergriffen wurden, um diese Ziele zu erreichen, waren Workshops und Schulungen zur materialeffizienten Gestaltung von Maschinenkomponenten und die Festlegung von Verantwortlichkeiten und Terminen zur kontinuierlichen Stücklistenpflege.

Durch diese Maßnahmen konnten mehr als fünf Prozent des verwendeten Stahls je Maschine eingespart werden. Die verbesserte Stücklistenpflege schlug sich in einer beträchtlichen Ausschussreduzierung nieder. Insgesamt war es möglich, dadurch 4,1 % des gesamten Materials einzusparen, was einer Kostenreduktion von 50.000 Euro pro Jahr entsprach. (Quelle: Deutsche Materialeffizienzagentur (demea))

Glasdach im Innenhof des Reichstagspräsidentenpalais

Ein prominentes Beispiel einer materialeffizienten Umsetzung eines Bauprojektes ist das Glasdach im Innenhof des Reichstagspräsidentenpalais. Ursprünglich war angedacht, die Dachkonstruktion durch starke Stahlstreben auszuführen, was im Vergleich zu einer Leichtbauweise ungünstiger gewesen wäre.

Die Umsetzung einer alternativen Bauweise wurde durch die Entwicklung einer selbsttragenden Dachkonstruktion und durch dickere Glasscheiben, die die Stützfunktion der Stahlstreben übernehmen, ermöglicht.

Es wurden dadurch sieben Tonnen Stahl und 330 Meter Alu-Profil eingespart, das entspricht 40 % der ursprünglich geplanten Gesamtstahlmenge bzw. 60 % der Kosten. (Quelle: Deutsche Materialeffizienzagentur (demea))
6.4 Nahrungsmittel

Hersteller von Tiefkühlkost

Bei einem Hersteller für Tiefkühlprodukte wurde versucht, die vor allem bei der Rohmaterialverarbeitung und der Primärverpackung auftretenden Verluste zu reduzieren. Dies wurde durch Optimierung von Verpackung und Logistik sowie durch Material- und Energieeinsparungen an verschiedenen Produktionsstandorten erreicht. Dabei konnten die Gesamtproduktionskosten um 3,5 % reduziert werden. Die Kapitalrückflusszeit betrug bei 95 % aller Maßnahmen weniger als ein Jahr. (Quelle: Little (2004))

Hersteller von Babynahrung

Bei einem Hersteller für Babynahrung traten Materialverluste vor allem auf Grund von Qualitätsschwankungen auf. Durch Reduktion der Materialverluste betrug die Gesamtkosteneinsparung 1,2 %. Die Kapitalrückflusszeit belief sich auf sieben Monate. (Quelle: Little (2004))
7 Volkswirtschaftliche Materialflussrechnung und Materialeffizienz

Materialflussrechnungen werden sowohl auf mikroökonomischer als auch auf makroökonomischer Ebene durchgeführt. Auf der mikroökonomischen Ebene geht es um die Erfassung und Darstellung der Materialflüsse innerhalb eines Unternehmens. Auf der makroökonomischen Ebene – und diese wird hier betrachtet – werden sämtliche Materialflüsse innerhalb der gesamten Volkswirtschaft aggregiert.

Auf der Grundlage der Ergebnisse der Materialflussrechnung lässt sich eine Reihe wichtiger Indikatoren bestimmen. Dazu gehören der DMI (Direct Material Input), der DMC (Domestic Material Consumption) sowie die Quotienten DMC/BIP (Materialintensität) und BIP/DMC, wobei dieser Indikator als Materialeffizienz (oder Materialproduktivität) bezeichnet wird. Die einzelnen Indikatoren sind wie folgt definiert:

- **DMI** – der direkte Materialinput besteht aus der inländischen Materialentnahme und den Importen.

- **DMC** – den inländischen Materialverbrauch erhält man, wenn vom DMI die Exporte abgezogen werden.

- **DMC/BIP** – die Materialintensität gibt an, wie viele Materialeinheiten benötigt werden, um eine Einheit des BIP zu erzeugen.

- **BIP/DMC** – die Materialeffizienz entspricht dem Kehrwert der Materialintensität. Sie gibt an, wie viele BIP-Einheiten je Materialeinheit erzeugt werden.
Dabei ist zu berücksichtigen, dass die angegebenen Indikatoren ausschließlich auf den Materialmengen basieren (in Tonnen). Qualitätsunterschiede werden daher nicht berücksichtigt.

Tabelle 3: Indikatoren aus der Materialflussrechnung, Österreich 1995-2008

<table>
<thead>
<tr>
<th>Jahr</th>
<th>DMI</th>
<th>DMC</th>
<th>BIP</th>
<th>Materialeffizienz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BIP/DMC</td>
</tr>
<tr>
<td></td>
<td>Index 1995=100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
</tr>
<tr>
<td>1996</td>
<td>102,5</td>
<td>102,5</td>
<td>102,2</td>
<td>99,7</td>
</tr>
<tr>
<td>1997</td>
<td>107,7</td>
<td>106,8</td>
<td>104,4</td>
<td>97,7</td>
</tr>
<tr>
<td>1998</td>
<td>105,3</td>
<td>102,4</td>
<td>108,2</td>
<td>105,6</td>
</tr>
<tr>
<td>1999</td>
<td>108,9</td>
<td>105,9</td>
<td>111,8</td>
<td>105,5</td>
</tr>
<tr>
<td>2000</td>
<td>108,7</td>
<td>104,5</td>
<td>115,8</td>
<td>110,8</td>
</tr>
<tr>
<td>2001</td>
<td>107,2</td>
<td>101,5</td>
<td>116,5</td>
<td>114,8</td>
</tr>
<tr>
<td>2002</td>
<td>114,8</td>
<td>109,0</td>
<td>118,4</td>
<td>108,6</td>
</tr>
<tr>
<td>2003</td>
<td>111,1</td>
<td>103,8</td>
<td>119,3</td>
<td>115,0</td>
</tr>
<tr>
<td>2004</td>
<td>117,2</td>
<td>108,7</td>
<td>122,4</td>
<td>112,6</td>
</tr>
<tr>
<td>2005</td>
<td>120,8</td>
<td>111,8</td>
<td>125,4</td>
<td>112,2</td>
</tr>
<tr>
<td>2006</td>
<td>123,6</td>
<td>113,5</td>
<td>129,7</td>
<td>114,3</td>
</tr>
<tr>
<td>2007</td>
<td>125,4</td>
<td>111,8</td>
<td>134,3</td>
<td>120,1</td>
</tr>
<tr>
<td>2008</td>
<td>124,5</td>
<td>110,5</td>
<td>137,1</td>
<td>124,1</td>
</tr>
</tbody>
</table>

Quelle: Statistik Austria 2011.

Das Basisjahr für die Indikatoren wurde mit 1995=100 festgesetzt, da in diesem Jahr Österreich der EU beigetreten ist und damit die europäischen Wirtschaftsklassifikationen NACE (Wirtschaftssektoren) und PRODCOM (Güter) übernommen wurden. Dies erlaubt einen adäquaten Vergleich der Zeitreihenwerte.

Betrachtet man den gesamten Zeitraum 1995-2008, dann stieg der direkte Materialinput um 24,5 %, während der inländische Materialverbrauch um 10,5 % zunahm. Im gleichen Zeitraum erhöhte sich die Materialeffizienz um 24,1 %.
8 Bilanzdaten und Materialeffizienz

Der bilanztechnische Zusammenhang zwischen Rohertrag und Materialaufwand lässt sich der folgenden Tabelle entnehmen:

<table>
<thead>
<tr>
<th>Tabelle 4: Bilanz, Definition Rohertrag und Beispieldaten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Umsatzerlöse</td>
</tr>
<tr>
<td>- Erlösschmälerungen</td>
</tr>
<tr>
<td>Nettoerlöse</td>
</tr>
<tr>
<td>- Bestandsveränderung, activierte Eigenleistung</td>
</tr>
<tr>
<td>Betriebsleistung</td>
</tr>
<tr>
<td>- Materialaufwand</td>
</tr>
<tr>
<td>- Fremdleistungen</td>
</tr>
<tr>
<td>Rohertrag</td>
</tr>
</tbody>
</table>

8.1 Berücksichtigung von Fremdleistungen

Da die Fremdleistungen ebenfalls einen Materialaufwand beinhalten, der aber nicht explizit in der betreffenden Position ausgewiesen wird, ist zu berücksichtigen, dass eine solche Auswertung den tatsächlichen Materialaufwand noch unterschätzen würde.
Um dieses Problem zu adressieren, werden zwei alternative Ansätze vorgestellt, die den effektiv im Unternehmen angefallenen Materialaufwand bzw. den gesamten Materialaufwand im Endprodukt bestimmen.

Variante 1: Bereinigung sämtlicher Bilanzkennzahlen um die Fremdleistungen

Bei der ersten Variante werden die Bilanzkennzahlen um die Fremdleistungen bereinigt. Durch die Annahme, dass die Betriebsleistung gleich der Summe aus Materialaufwand plus Rohertrag ist, kommt es zu einer Reduktion der Betriebsleistung (eben um die Fremdleistungen):

\[
\text{BL}(\%)^* := \text{MA}(\%) + \text{RE}(\%) = \text{BL}(\%) - \text{FL}(\%)
\]

Materialaufwand in Prozent der Betriebsleistung

Fremdleistungen in Prozent der Betriebsleistung

Rohrtrag in Prozent der Betriebsleistung

Betriebsleistung normiert auf 100 %

Danach werden die entsprechenden „fremdleistungsbereinigten“ Bilanzkennzahlen Materialaufwand und Rohertrag bestimmt:

\[
\begin{align*}
\text{MA}(\%)^* & := \frac{\text{MA}(\%)}{\text{BL}(\%)} = \frac{\text{MA}(\%)}{\text{MA}(\%) + \text{RE}(\%)} \\
\text{RE}(\%)^* & := \frac{\text{RE}(\%)}{\text{BL}(\%)} = \frac{\text{RE}(\%)}{\text{MA}(\%) + \text{RE}(\%)}
\end{align*}
\]

fremdleistungsbereinigter Materialaufwand

fremdleistungsbereinigter Rohrtrag

Es kann nun gezeigt werden, dass diese Umformung den ursprünglichen Wert der Kennzahl „Materialeffizienz“ nicht verändert:

\[
\text{Materialeffizienz} = \frac{\text{RE}(\%)^*}{\text{MA}(\%)^*} = \frac{\text{RE}(\%) x (\text{MA}(\%) + \text{RE}(\%))}{\text{MA}(\%) x (\text{MA}(\%) + \text{RE}(\%))} = \frac{\text{RE}(\%)}{\text{MA}(\%)}
\]
Variante 2: Alle Leistungen werden unternehmensintern erbracht

Bei der zweiten Variante gehen wir von der (fiktiven) Annahme aus, dass alle Fremdleistungen von dem Unternehmen selbst erbracht würden. Dementsprechend müssen bei gleicher Betriebsleistung die Werte für Materialaufwand und Rohertrag erhöht werden. Zu diesem Zweck benötigt man eine Hypothese über die Zusammensetzung der Fremdleistungen, die hier wie folgt lautet:

Fremdleistungen (von Zulieferfirmen) haben die gleiche anteilige Zusammensetzung ihrer Kostenkomponenten wie der Durchschnitt der Unternehmen in der jeweils betrachteten Branche. Somit können die Fremdleistungen über den Schlüssel aus Materialaufwand und Rohertrag aufgeteilt werden:

\[FL(\%) = FL(\%) \times \frac{MA(\%)}{MA(\%) + RE(\%)} + FL(\%) \times \frac{RE(\%)}{MA(\%) + RE(\%)} \]

\[MA(\%) \ldots \text{Materialaufwand in Prozent der Betriebsleistung} \]
\[FL(\%) \ldots \text{Fremdleistungen in Prozent der Betriebsleistung} \]
\[RE(\%) \ldots \text{Rohertrag in Prozent der Betriebsleistung} \]

Die Berechnung der „fremdleistungsbereinigten“ Bilanzkennzahlen ergibt folgende Kennzahlen:

\[MA(\%)^{**} := MA(\%) + FL(\%) \times \frac{MA(\%)}{MA(\%) + RE(\%)} \]

\[RE(\%)^{**} := RE(\%) + FL(\%) \times \frac{RE(\%)}{MA(\%) + RE(\%)} \]

Auch bei dieser Variante verändert sich der Wert der Kennzahl „Materialeffizienz“ nicht:

\[\text{Materialeffizienz} = \frac{RE(\%)^{**}}{MA(\%)^{**}} \]

\[= \frac{RE(\%) + FL(\%) \times \frac{RE(\%)}{MA(\%) + RE(\%)}}{MA(\%) + FL(\%) \times \frac{RE(\%)}{MA(\%) + RE(\%)}} \]

\[= \frac{RE(\%) \times (MA(\%) + RE(\%) + FL(\%))}{MA(\%) \times (MA(\%) + RE(\%) + FL(\%))} \]

\[= \frac{RE(\%)}{MA(\%)} \]
Im Ergebnis lässt sich also der Materialaufwand der Fremdleistungen durch beide vorgestellten Varianten berücksichtigen, ohne dass dabei die Kennzahl Materialeffizienz selbst verändert würde. Wir werden bei den anschließenden Branchenbetrachtungen auf die Variante 1 zurückgreifen.

8.2 Analyse einzelner Branchen

8.2.1 Chemie

Bei den folgenden Auswertungen für die chemische Industrie ist zu beachten, dass die jeweilige Zahl der ausgewerteten niederösterreichischen Unternehmen, insbesondere im Vergleich zu einigen anderen untersuchten Branchen, nicht allzu groß ist. Die Ergebnisse sind daher mit größerer Unsicherheit behaftet, was bei deren Interpretation entsprechend zu berücksichtigen ist.

Tabelle 5: Chemie: Anzahl der ausgewerteten Betriebe

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Österreich</td>
<td>334</td>
<td>368</td>
<td>378</td>
<td>417</td>
<td>380</td>
<td>395</td>
<td>398</td>
<td>365</td>
<td>367</td>
<td>331</td>
<td>156</td>
</tr>
<tr>
<td>Niederösterreich</td>
<td>42</td>
<td>62</td>
<td>66</td>
<td>76</td>
<td>73</td>
<td>67</td>
<td>76</td>
<td>72</td>
<td>77</td>
<td>69</td>
<td>33</td>
</tr>
</tbody>
</table>

ÖNACE 2003: DG - Herstellung von Chemikalien und chemischen Erzeugnissen

Gesamtösterreich keine größeren Unterschiede gegeben waren, zeigen Abbildung 9 und Abbildung 10 tendenziell den gleichen Verlauf.4

Abbildung 9: Chemie: Materialaufwand und Fremdleistungen

[Diagramm 1: Materialaufwand und Fremdleistungen in % der Betriebsleistung]

Quelle: Economica (2011).

**Abbildung 10: Chemie: Materialaufwand in % der Betriebsleistung*]

[Diagramm 2: Materialaufwand in % der Betriebsleistung]

Quelle: Economica (2011). *Die Betriebsleistung wurde um den Anteil der Fremdleistungen reduziert.*

4 Um die Unterschiede zwischen Niederösterreich und Österreich klarer darstellen zu können, wurde für die zweite Abbildung eine andere Skalierung der vertikalen Achse gewählt. Diese Vorgehensweise wird auch in den folgenden Branchenbetrachtungen beibehalten.
Die Zahlen für die Vorräte (in % der Betriebsleistung) bewegen sich für Niederösterreich im Bereich zwischen 10 % und 20 % (grob geschätzt). Dabei scheinen die Werte für Niederösterreich, entgegen dem Bundestrend, leicht rückläufig zu sein.

Abbildung 11: Chemie: Vorräte

Die für die chemische Industrie berechnete Materialeffizienz (Rohtrtrag/Materialaufwand) weist für die vergangenen fünf Jahre einen rückläufigen Trend auf. Betrachtet man die lineare Approximation, dann gilt dies sogar für das gesamte letzte Jahrzehnt.

Abbildung 12: Chemie: Materialeffizienz

8.2.2 Holz

Tabelle 6: Holz: Anzahl der ausgewerteten Betriebe

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Österreich</td>
<td>1.447</td>
<td>1.597</td>
<td>1.655</td>
<td>1.922</td>
<td>1.890</td>
<td>1.754</td>
<td>1.626</td>
<td>1.621</td>
<td>1.622</td>
<td>1.477</td>
<td>564</td>
</tr>
<tr>
<td>Niederösterreich</td>
<td>248</td>
<td>294</td>
<td>313</td>
<td>399</td>
<td>401</td>
<td>370</td>
<td>281</td>
<td>282</td>
<td>276</td>
<td>271</td>
<td>138</td>
</tr>
</tbody>
</table>

Abbildung 13: Holz: Materialaufwand und Fremdleistungen

Abbildung 13 zeigt den Materialaufwand und die Fremdleistungen für Österreich und Niederösterreich, wobei sich der Materialaufwand zwischen 50 % und 60 % bewegt, während die Fremdleistungen unter 10 % liegen. Bei letzteren ist allerdings für die vergangenen Jahre ein leichter Aufwärtstrend zu beobachten. Verwendet man als Bezuggröße die korrigierte Betriebsleistung, dann erhält man eine ähnliche Darstellung, allerdings auf etwas höherem Niveau.

Die Vorräte (Abbildung 15) liegen in etwa im Bereich von 15 % und 20 % (von einigen Ausnahmen abgesehen). Besonders fällt die höhere Volatilität bei den Werten für
Niederösterreich sowie eine gewisse Annäherung an den gesamtösterreichischen Trend in den vergangenen Jahren auf.

Abbildung 14: Holz: Materialaufwand

Abbildung 15: Holz: Vorräte

Die Materialeffizienz zeigt über den untersuchten Zeitraum für Niederösterreich keinen Trend. Die Werte bewegen sich im Intervall von etwa 0,6 bis 0,9. Für Gesamtösterreich
scheint ein leichter Rückgang vorzuliegen, insbesondere, wenn man die lineare Approximation betrachtet.

Abbildung 16: Holz: Materialeffizienz

![Diagramm](image)

Quelle: Economica (2011).

8.2.3 Maschinenbau

Tabelle 7 gibt eine Übersicht über die Zahl der ausgewerteten Unternehmen im Bereich der Maschinenbaubranche in Österreich und Niederösterreich.

Tabelle 7: Maschinenbau: Anzahl der ausgewerteten Betriebe

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Österreich</td>
<td>850</td>
<td>1.024</td>
<td>1.203</td>
<td>1.292</td>
<td>1.292</td>
<td>1.286</td>
<td>1.397</td>
<td>1.391</td>
<td>1.462</td>
<td>1.258</td>
<td>574</td>
</tr>
<tr>
<td>Niederösterreich</td>
<td>127</td>
<td>170</td>
<td>190</td>
<td>203</td>
<td>201</td>
<td>209</td>
<td>232</td>
<td>233</td>
<td>245</td>
<td>200</td>
<td>89</td>
</tr>
</tbody>
</table>

Quelle: KMU FORSCHUNG AUSTRIA (2011).

ÖNACE 2003: DK - Maschinenbau

Abbildung 17: Maschinenbau: Materialaufwand und Fremdleistungen

Abbildung 18: Maschinenbau: Materialaufwand*

Die Vorräte (in % der Betriebsleistung) in Niederösterreich liegen praktisch während des gesamten Zeitraums deutlich oberhalb der österreichischen Werte, was auf einen signifikanten Unterschied hinweist. Die Entwicklung der Materialeffizienz scheint im Wesentlichen derjenigen für Gesamtösterreich zu entsprechen. Dabei ist ein leicht sinkender Trend
festzustellen. Zu Beginn des Jahrzehnts lag die Materialeffizienz etwa bei 1 (und darüber), in den vergangenen Jahren bei etwa 0,8 bis 0,9.

8.2.4 Metall

Tabelle 8: Metall: Anzahl der ausgewerteten Betriebe

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Österreich</td>
<td>1.850</td>
<td>2.157</td>
<td>2.220</td>
<td>2.325</td>
<td>2.295</td>
<td>2.413</td>
<td>2.616</td>
<td>2.716</td>
<td>2.802</td>
<td>2.574</td>
<td>1.088</td>
</tr>
<tr>
<td>Niederösterreich</td>
<td>304</td>
<td>367</td>
<td>363</td>
<td>370</td>
<td>389</td>
<td>377</td>
<td>451</td>
<td>464</td>
<td>502</td>
<td>460</td>
<td>202</td>
</tr>
</tbody>
</table>

ÖNACE 2003: DJ - Metallerzeugung und -bearbeitung, Herstellung von Metallerzeugnissen

Abbildung 21: Metall: Materialaufwand und Fremdleistungen

In der Metallbranche lag der Materialaufwand zwischen 40 % und 50 % (der Betriebsleistung). Ein ausgeprägter Trend lässt sich weder für Niederösterreich noch für Gesamtösterreich erkennen. Über einen Großteil der Dekade lag der Materialaufwand für Niederösterreich einige Prozentpunkte oberhalb der Werte für Österreich. Ähnlich ist dies auch bei Heranziehung der korrigierten Betriebsleistung, allerdings zeigen die Werte einen
gewissen Niveauanstieg. Etwas anders sieht die Situation bei den Fremdleistungen (in %
der Betriebsleistung) aus. Für Niederösterreich kann man hier über den gesamten Zeitraum
hinweg einen leichten Anstieg von etwa 5 % bis auf etwa 10 % konstatieren.

Abbildung 22: Metall: Materialaufwand

Bei den Vorräten (in % der Betriebsleistung) ist bis etwa Mitte des letzten Jahrzehnts ein
gewisser Rückgang (18 % auf etwa 14 %) zu beobachten, seitdem erfolgte aber wieder ein
Anstieg.

Abbildung 23: Metall: Vorräte

Im Hinblick auf die Materialeffizienz zeigen die Werte für Niederösterreich ein recht volatiles Verhalten, sie liegen etwas über 1,0 bzw. unter 1,0. Die lineare Approximation weist einen leichten Rückgang auf, von etwa 1,1 auf 1,0.

8.2.5 Nahrungsmittel

Tabelle 9: Nahrungsmittel: Anzahl der ausgewerteten Betriebe

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Österreich</td>
<td>1.724</td>
<td>1.865</td>
<td>1.941</td>
<td>2.134</td>
<td>2.215</td>
<td>2.223</td>
<td>2.302</td>
<td>2.271</td>
<td>2.271</td>
<td>2.011</td>
<td>881</td>
</tr>
<tr>
<td>Niederösterreich</td>
<td>370</td>
<td>407</td>
<td>431</td>
<td>446</td>
<td>480</td>
<td>501</td>
<td>549</td>
<td>556</td>
<td>501</td>
<td>244</td>
<td></td>
</tr>
</tbody>
</table>

Der Materialaufwand (in % der Betriebsleistung) hat sich, ausgehend von etwa 55 %, auf etwas über 60 % erhöht. Die Werte für Niederösterreich liegen in den meisten Jahren oberhalb derer für Österreich (ähnlich wie auch bei der korrigierten Betriebsleistung). Bei den Fremdleistungen gab es praktisch keine Veränderung, diese weisen hier nur einen sehr geringen Anteil (in % der Betriebsleistung) auf.

Abbildung 27: Nahrungsmittel: Vorräte

Bei den Vorräten stiegen die Anteilswerte (in % der Betriebsleistung) seit Ende der 1990er Jahre bis etwa zum Beginn der Wirtschafts- und Finanzkrise stetig an und zwar von knapp über 6 % auf knapp unter 10 %. Danach sind sie wieder etwas zurückgegangen.

Abbildung 28: Nahrungsmittel: Materialeffizienz

8.2.6 Textilien

Bei den Ergebnissen dieses Abschnitts ist zu beachten, dass, ähnlich wie für die Chemiebranche, auch für die Textilbranche die Zahl der ausgewerteten Betriebe eher klein ist.

Tabelle 10: Textilien: Anzahl der ausgewerteten Betriebe

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Österreich</td>
<td>473</td>
<td>521</td>
<td>563</td>
<td>614</td>
<td>571</td>
<td>560</td>
<td>585</td>
<td>553</td>
<td>537</td>
<td>443</td>
<td>151</td>
</tr>
<tr>
<td>Niederösterreich</td>
<td>40</td>
<td>43</td>
<td>54</td>
<td>71</td>
<td>67</td>
<td>69</td>
<td>58</td>
<td>59</td>
<td>57</td>
<td>44</td>
<td>20</td>
</tr>
</tbody>
</table>

Abbildung 29: Textilien: Materialaufwand und Fremdleistungen

Der Materialaufwand (in % der Betriebsleistung) liegt für Niederösterreich deutlich über dem Wert von 0,5 bzw. nur knapp darunter (Abbildung 29). Dabei lässt sich ein leichter Rückgang über die Dekade beobachten, ebenso in Abbildung 30. Die Fremdleistungen (in % der Betriebsleistung) liegen deutlich unter 10 % und zeigen keinen Trend.
Abbildung 30: Textilien: Materialaufwand*

Abbildung 31: Textilien: Vorräte

Die Werte für die Vorräte (in % der Betriebsleistung) bewegen sich zwischen 20 % und 25 %, ohne einen erkennbaren Trend aufzuweisen.
Die Werte für die Materialeffizienz streuen recht stark und liegen im Intervall von etwa 0,6 bis etwa 1,0.

8.3 Zusammenfassung der Branchenanalysen

Die Kennzahl Vorräte in Prozent des Materialaufwandes beinhaltet auch Informationen über die Umschlagshäufigkeit des Lagervorrats, die sich als Kehrwert dieser Größe ergibt. Es wird also der effektive Materialeinsatz der untersuchten Branche bei der Effizienzbetrachtung der Lagerhaltung ebenfalls berücksichtigt. Im Vergleich zur vorherigen Betrachtung führt dies aufgrund der verringerten Bezugsgröße zu einer Erhöhung der Kennzahl, wobei sich die Größenrelationen und -verhältnisse zwischen dem niederösterreichischen und dem österreichischen Wert je nach der Höhe des Materialaufwandes verändern.

Die Branche Chemie in Niederösterreich erweist sich auch bei der Betrachtung des letzten Bilanzjahres nicht nur hinsichtlich der Lagerhaltung effizienter als der nationale Durchschnitt, sondern versteht es sogar, den Abstand noch zu vergrößern. Darüber hinaus findet man in diesem Wirtschaftsbereich über die gesamte Beobachtungsperiode hinweg betrachtet in Niederösterreich (26,7 %) mit einem kleineren Lagervolumen als in Österreich (27,5 %) das Auslassen. Das gleiche gilt auch für die Branche Metall, die zuletzt ebenfalls unter dem Wert für Österreich lag.

Das höchste Verbesserungspotential ist bei der Branche Maschinenbau in Niederösterreich zu erkennen, die nur in einem Bilanzjahr besser als der nationale Vergleichswert lag.

Tabelle 11: Vorräte in Prozent der Betriebsleistung

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Österreich</td>
<td></td>
</tr>
<tr>
<td>Chemie</td>
<td>15,56</td>
<td>13,02</td>
<td>13,41</td>
<td>14,28</td>
<td>14,96</td>
<td>13,89</td>
<td>14,28</td>
<td>14,27</td>
<td>14,77</td>
<td>15,54</td>
<td>15,8</td>
</tr>
<tr>
<td>Holz</td>
<td>16,3</td>
<td>17,23</td>
<td>18,47</td>
<td>17,01</td>
<td>16,73</td>
<td>16,71</td>
<td>15,66</td>
<td>15,4</td>
<td>15,94</td>
<td>16,32</td>
<td>16,51</td>
</tr>
<tr>
<td>Maschinenbau</td>
<td>18,05</td>
<td>16,99</td>
<td>17,58</td>
<td>18,03</td>
<td>17,66</td>
<td>17,23</td>
<td>18,75</td>
<td>17,43</td>
<td>18,15</td>
<td>19,02</td>
<td>20,62</td>
</tr>
<tr>
<td>Metall</td>
<td>16,17</td>
<td>16,23</td>
<td>15,75</td>
<td>15,35</td>
<td>14,64</td>
<td>14,37</td>
<td>13,83</td>
<td>14,94</td>
<td>14,99</td>
<td>15,23</td>
<td>18,02</td>
</tr>
<tr>
<td>Nahrungsmittel</td>
<td>7,69</td>
<td>8,72</td>
<td>8,44</td>
<td>8,43</td>
<td>8,24</td>
<td>7,98</td>
<td>8,7</td>
<td>8,9</td>
<td>9,43</td>
<td>9,47</td>
<td>8,9</td>
</tr>
<tr>
<td>Textilien</td>
<td>20,28</td>
<td>20,12</td>
<td>20,41</td>
<td>21,11</td>
<td>21,69</td>
<td>20,87</td>
<td>19,01</td>
<td>18,97</td>
<td>22,01</td>
<td>23,08</td>
<td>22,38</td>
</tr>
<tr>
<td>Niederösterreich</td>
<td></td>
</tr>
<tr>
<td>Chemie</td>
<td>17,38</td>
<td>13,24</td>
<td>13,75</td>
<td>13,33</td>
<td>15,96</td>
<td>15,56</td>
<td>14,41</td>
<td>15,55</td>
<td>14,48</td>
<td>13,86</td>
<td>12,34</td>
</tr>
<tr>
<td>Holz</td>
<td>16,24</td>
<td>14,87</td>
<td>21,38</td>
<td>18,69</td>
<td>17,48</td>
<td>20,43</td>
<td>16,26</td>
<td>14,85</td>
<td>15,88</td>
<td>15,04</td>
<td>16,27</td>
</tr>
<tr>
<td>Maschinenbau</td>
<td>19,84</td>
<td>19,85</td>
<td>17,64</td>
<td>23,48</td>
<td>23,16</td>
<td>19,66</td>
<td>21,48</td>
<td>19,92</td>
<td>20,7</td>
<td>22,91</td>
<td>22,5</td>
</tr>
<tr>
<td>Metall</td>
<td>18,02</td>
<td>16,5</td>
<td>15,05</td>
<td>15,8</td>
<td>15,48</td>
<td>15,08</td>
<td>13,71</td>
<td>14,21</td>
<td>15,32</td>
<td>16,16</td>
<td>16,41</td>
</tr>
<tr>
<td>Nahrungsmittel</td>
<td>6,6</td>
<td>8,48</td>
<td>8,94</td>
<td>8,82</td>
<td>8,76</td>
<td>9,06</td>
<td>9,92</td>
<td>10,01</td>
<td>11,49</td>
<td>10,23</td>
<td>9,55</td>
</tr>
<tr>
<td>Textilien</td>
<td>24,17</td>
<td>20,38</td>
<td>23,35</td>
<td>21,88</td>
<td>22,55</td>
<td>22,24</td>
<td>22,95</td>
<td>24,93</td>
<td>24,06</td>
<td>23,31</td>
<td>24,17</td>
</tr>
<tr>
<td>Österreich - Niederösterreich</td>
<td></td>
</tr>
<tr>
<td>Chemie</td>
<td>-1,82</td>
<td>-0,22</td>
<td>-0,34</td>
<td>0,95</td>
<td>-1</td>
<td>-1,67</td>
<td>-0,13</td>
<td>-1,28</td>
<td>0,29</td>
<td>1,68</td>
<td>3,46</td>
</tr>
<tr>
<td>Holz</td>
<td>0,06</td>
<td>2,36</td>
<td>-2,91</td>
<td>-1,68</td>
<td>-0,75</td>
<td>-3,72</td>
<td>-0,6</td>
<td>0,55</td>
<td>0,06</td>
<td>1,28</td>
<td>0,24</td>
</tr>
<tr>
<td>Maschinenbau</td>
<td>-0,89</td>
<td>-2,86</td>
<td>-0,06</td>
<td>-5,45</td>
<td>-5,44</td>
<td>-2,43</td>
<td>-2,73</td>
<td>-2,49</td>
<td>-2,55</td>
<td>-3,89</td>
<td>-1,88</td>
</tr>
<tr>
<td>Metall</td>
<td>-1,85</td>
<td>-0,27</td>
<td>0,7</td>
<td>-0,45</td>
<td>-0,84</td>
<td>-0,71</td>
<td>0,12</td>
<td>0,73</td>
<td>-0,33</td>
<td>-0,93</td>
<td>1,61</td>
</tr>
<tr>
<td>Nahrungsmittel</td>
<td>1,09</td>
<td>0,24</td>
<td>-0,5</td>
<td>-0,39</td>
<td>-0,52</td>
<td>-1,08</td>
<td>-1,22</td>
<td>-1,11</td>
<td>-2,06</td>
<td>-0,76</td>
<td>-0,65</td>
</tr>
<tr>
<td>Textilien</td>
<td>-3,89</td>
<td>-0,26</td>
<td>-2,94</td>
<td>-0,77</td>
<td>-1,86</td>
<td>-1,47</td>
<td>-3,94</td>
<td>-5,96</td>
<td>-2,05</td>
<td>-0,23</td>
<td>-1,79</td>
</tr>
</tbody>
</table>

Über die gesamte Beobachtungsperiode gesehen gab es den größten Aufholbedarf in der Branche Textilien in Niederösterreich, abzuwarten bleibt, ob der zuletzt positive Trend beibehalten werden kann. Der Branchenwert der Sparte Chemie in Niederösterreich liegt ebenfalls in neun von elf Fällen (Bilanzjahre) über dem korrespondierenden Österreichniveau, wobei es in dieser Branche sogar zu einer tendenziellen Erhöhung des Materialaufwandes kam.

Über alle betrachteten Branchen hinweg scheint es einen gewissen Aufholprozess in Niederösterreich zu geben, so lagen im letzten Bilanzjahr nur mehr zwei Branchen über dem Österreich-Durchschnitt.

Tabelle 12: Vorräte in Prozent des Materialaufwandes

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemie</td>
<td>31,56</td>
<td>23,89</td>
<td>26,03</td>
<td>27,71</td>
<td>30,05</td>
<td>28,21</td>
<td>27,71</td>
<td>26,64</td>
<td>26,58</td>
<td>27,10</td>
<td>27,16</td>
</tr>
<tr>
<td>Holz</td>
<td>30,86</td>
<td>31,72</td>
<td>34,76</td>
<td>32,41</td>
<td>31,61</td>
<td>31,29</td>
<td>28,33</td>
<td>28,04</td>
<td>29,24</td>
<td>30,16</td>
<td>29,86</td>
</tr>
<tr>
<td>Maschinenbau</td>
<td>38,67</td>
<td>36,31</td>
<td>37,32</td>
<td>39,66</td>
<td>36,75</td>
<td>35,24</td>
<td>37,00</td>
<td>34,69</td>
<td>35,99</td>
<td>37,73</td>
<td>40,00</td>
</tr>
<tr>
<td>Metall</td>
<td>38,10</td>
<td>36,46</td>
<td>35,09</td>
<td>36,59</td>
<td>35,31</td>
<td>33,51</td>
<td>30,12</td>
<td>32,41</td>
<td>31,89</td>
<td>33,54</td>
<td>41,14</td>
</tr>
<tr>
<td>Nahrungsmittel</td>
<td>13,58</td>
<td>14,75</td>
<td>14,17</td>
<td>14,78</td>
<td>14,60</td>
<td>14,07</td>
<td>15,25</td>
<td>15,57</td>
<td>15,96</td>
<td>15,36</td>
<td>14,54</td>
</tr>
<tr>
<td>Textilien</td>
<td>42,57</td>
<td>40,31</td>
<td>40,29</td>
<td>44,02</td>
<td>45,02</td>
<td>43,87</td>
<td>40,11</td>
<td>38,96</td>
<td>45,46</td>
<td>47,46</td>
<td>46,04</td>
</tr>
</tbody>
</table>

Österreich - Niederösterreich

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemie</td>
<td>-7,84</td>
<td>0,18</td>
<td>-1,59</td>
<td>3,73</td>
<td>0,16</td>
<td>0,30</td>
<td>1,60</td>
<td>-1,33</td>
<td>1,41</td>
<td>4,70</td>
<td>7,38</td>
</tr>
<tr>
<td>Holz</td>
<td>1,13</td>
<td>6,16</td>
<td>-3,98</td>
<td>-3,63</td>
<td>-2,94</td>
<td>-6,37</td>
<td>-0,25</td>
<td>2,33</td>
<td>-0,01</td>
<td>1,39</td>
<td>-1,65</td>
</tr>
<tr>
<td>Maschinenbau</td>
<td>-1,39</td>
<td>-7,64</td>
<td>1,62</td>
<td>-10,96</td>
<td>-14,05</td>
<td>-6,55</td>
<td>-5,60</td>
<td>-4,69</td>
<td>-5,46</td>
<td>-7,99</td>
<td>-6,63</td>
</tr>
<tr>
<td>Metall</td>
<td>-2,57</td>
<td>0,96</td>
<td>5,02</td>
<td>1,53</td>
<td>-2,14</td>
<td>-0,28</td>
<td>2,15</td>
<td>2,22</td>
<td>-1,56</td>
<td>-3,33</td>
<td>5,00</td>
</tr>
<tr>
<td>Nahrungsmittel</td>
<td>1,66</td>
<td>0,67</td>
<td>-0,98</td>
<td>0,40</td>
<td>-0,20</td>
<td>-1,05</td>
<td>-1,56</td>
<td>-0,98</td>
<td>-2,18</td>
<td>-0,37</td>
<td>-1,39</td>
</tr>
<tr>
<td>Textilien</td>
<td>-4,51</td>
<td>6,14</td>
<td>-2,17</td>
<td>4,38</td>
<td>5,04</td>
<td>2,78</td>
<td>-4,90</td>
<td>-11,50</td>
<td>-5,88</td>
<td>2,14</td>
<td>-4,24</td>
</tr>
</tbody>
</table>

Die Berücksichtigung der fremdleistungsbereinigten Kennzahlen verändert lediglich Einzelergebnisse, die vorher getroffenen Grundaussagen verbleiben gültig.
Die Kennzahl Materialeffizienz, definiert als Rohertrag in Relation zum Materialaufwand auf betrieblicher Ebene, weist bei nahezu allen Branchen unabhängig von der regionalen Zuordnung eine sinkende Tendenz auf. Einzige Ausnahme bildet die Branche Textilien in Niederösterreich, die jedoch anfangs weit unter dem Wert für Österreich lag und sich erst in den letzten Jahren auf das nationale Niveau bewegt hat.

Tabelle 15: Materialeffizienz; Rohertrag in Relation zu Materialaufwand

<table>
<thead>
<tr>
<th>Chemie</th>
<th>Holz</th>
<th>Maschinenbau</th>
<th>Metall</th>
<th>Nahrungsmittel</th>
<th>Textilien</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,93</td>
<td>1,21</td>
<td>-0,85</td>
<td>-1,02</td>
<td>1,54</td>
<td>-3,40</td>
</tr>
<tr>
<td>-1,06</td>
<td>-3,41</td>
<td>2,36</td>
<td>-1,07</td>
<td>-0,89</td>
<td>-8,79</td>
</tr>
<tr>
<td>2,02</td>
<td>-2,16</td>
<td>-1,53</td>
<td>-4,69</td>
<td>0,89</td>
<td>-4,06</td>
</tr>
<tr>
<td>-3,38</td>
<td>0,37</td>
<td>-0,23</td>
<td>-2,23</td>
<td>-4,46</td>
<td>-5,88</td>
</tr>
<tr>
<td>-3,18</td>
<td>2,04</td>
<td>2,70</td>
<td>1,13</td>
<td>-3,46</td>
<td>-9,96</td>
</tr>
<tr>
<td>-6,47</td>
<td>-0,74</td>
<td>1,87</td>
<td>-1,20</td>
<td>-2,83</td>
<td>-6,65</td>
</tr>
<tr>
<td>-4,12</td>
<td>-1,35</td>
<td>0,42</td>
<td>-2,58</td>
<td>-3,94</td>
<td>-3,93</td>
</tr>
<tr>
<td>-1,67</td>
<td>-0,95</td>
<td>-1,22</td>
<td>-0,69</td>
<td>1,17</td>
<td>2,66</td>
</tr>
<tr>
<td>-1,51</td>
<td>0,19</td>
<td>0,10</td>
<td>0,83</td>
<td>-3,35</td>
<td>-1,46</td>
</tr>
<tr>
<td>-4,19</td>
<td>2,13</td>
<td>-0,26</td>
<td>1,14</td>
<td>0,17</td>
<td></td>
</tr>
</tbody>
</table>

9 Maßnahmenvorschläge für ein Materialeffizienzprogramm

Materialberater

Um die Materialeffizienz-Potenziale in den KMU zu nutzen, sollte ein geeignetes Maßnahmenpaket vor allem an den oben genannten Hindernissen auf Unternehmensseite ansetzen. Hier wäre zunächst an einschlägige externe Beratung zu denken. Eine Maßnahme dazu könnte die Ausbildung von Materialberatern (evtl. in Modifikation des niederösterreichischen Innovationsassistenten) sein, die Unternehmen der materialintensiven Kernbranchen Beratungsleistungen im Hinblick auf eine Erhöhung der Materialeffizienz anbieten. Ziel wäre die Anhebung des materialbezogenen Qualifikationsniveaus in den Unternehmen sowie der materialbezogenen Prozess- und Produktivität.

Materialeffizienz-Assistent

In Zusammenarbeit mit dem AMS könnte die Ausbildung von Materialeffizienz-Assistenten überlegt werden, wobei insbesondere ältere Erwerbspersonen berücksichtigt werden könnten.

Chemikalien-Management

Aus- und Weiterbildung an Schulen und Berufsschulen

Akademische Ausbildung

In Betracht kommen könnte zudem die Entwicklung eines Studiengangs „Ressourceneffizienz“, welcher das Thema Materialeffizienz inkludiert. Daneben sollten auch akademische Lehrgänge angeboten werden, die berufsbegleitend absolviert werden können.

Öffentliche Ausschreibung von Materialeffizienzprojekten

Universitäten und Fachhochschulen ließen sich in das Thema Materialeffizienz eingebunden werden, indem entweder die Weiterentwicklung von bestimmten Verfahren oder die Effizienzverbesserung eines bestimmten Betriebes per Call ausgeschrieben wird. Auf diese Weise sollte ein Wissensaustausch zwischen Academia und Wirtschaft auf dem aktuell industrierelevanten Stand beschleunigt werden können.

Materialeffizienz-Netzwerk

Zum Zwecke des Informationsaustausches dürfte für KMU eine stärkere (infra)strukturelle Vernetzung im Bereich der Materialeffizienz von erheblichem Nutzen sein. Dazu könnte eine Ausschreibung für die Koordination und das Management eines solchen Materialeffizienz-Netzwerkes für bestimmte Branchen und die Bereitstellung von entsprechendem fachlichen Know-how in Betracht gezogen werden. Dieses Netzwerk sollte als social medium fungieren, mit dessen Hilfe Informationen bereitgestellt und Erfahrungen geteilt werden können.

Kommunikation: Internet-Tools und Newsletter

Potentialanalyse der Branchen in NÖ

Weiters könnte die Durchführung einer Potentialanalyse über alle Branchen hinweg in Betracht kommen. Als Vergleichsgröße für die niederösterreichischen Betriebe könnten jene aus anderen österreichischen Bundesländern sowie eventuell Betriebe aus Deutschland herangezogen werden.
Prämierung von Good-Practice-Beispielen

Ergänzend könnte eine öffentliche Ausschreibung zur Einreichung von Good-Practice-Beispielen auf dem Gebiet der Materialeffizienz gestartet werden. Die Prämierung könnte in Form eines (evtl. mit anderen Prämierungen verbundenen) Festaktes stattfinden, der gleichzeitig als Informationsveranstaltung dient.

Informationskampagne mit Breitenwirkung

Im Mittelpunkt einer solchen Informationskampagne würde die Sensibilisierung der Bevölkerung gegenüber dem Thema Materialeffizienz bzw. Ressourceneffizienz analog zum Thema Energieeffizienz stehen.

Bestandsaufnahme des (Primär-)Ressourcenverbrauchs der niederösterreichischen Wirtschaft.

Darauf aufbauend kann die technische Möglichkeit zum Recycling der Rohstoffe untersucht und in weiterer Folge die aktuellen Recyclingquoten erhoben werden. Dadurch lassen sich Stoffe identifizieren, die einerseits eine hohe Nachfrage aufweisen, andererseits aber auch durch Recycling (rück-)gewonnen werden können.
10 Zusammenfassung

Dem Kostenfaktor Energie wird mittlerweile nicht nur bei großen Unternehmen, sondern auch bei KMU eine entsprechend große Aufmerksamkeit gewidmet. Die vorliegende Studie beschäftigt sich im Gegensatz dazu mit einem weiteren Kostenfaktor, dem - insbesondere bei KMU - bis dato weitaus weniger Beachtung geschenkt wird. Selbst wenn ein knapper werdendes Rohstoffangebot die Erschließung neuer beziehungsweise die Reaktivierung bekannter Lagerstätten attraktiv werden, so werden derartige Aktivitäten mit einem deutlich höheren Aufwand für die Produzenten und damit korrespondierenden Preissteigerungen einhergehen.

Im Fokus dieser Untersuchung stehen die Materialkosten – und damit eng verbunden die Materialeffizienz, welche sich vereinfacht als Verhältnis von Output zu Input definieren lässt. Als Ergebnis jahrzehntelanger, intensiver Anstrengungen zur Erhöhung der Arbeitsproduktivität ist mittlerweile festzustellen, dass sich die Kostenanteile in der Produktion erheblich verschoben haben. So hat etwa beim Verarbeitenden Gewerbe in Deutschland im Zeitraum von 2004 bis 2007 der Ausgabenfaktor „Materialkosten (ohne Energie)“ an der gesamten Kostenbasis von 41,1 % auf 44,3 % zugelegt, während die anteilmäßig auf den nachfolgenden Rängen liegenden Kosten für Personal bzw. Handelswaren von 20,0 % auf 17,3 % bzw. von 11,5 % auf 10,9 % gesunken sind. Die Personalkosten weisen somit inzwischen weniger als die Hälfte des anteiligen Gewichts der Materialkosten auf.

Geht man von einer ähnlichen Situation in Österreich aus, so ist bei einer durchschnittlichen Materialkostenquote in der Industrie von über 40 % zu vermuten, dass bei dieser Kostenkomponente enorme Effizienzpotenziale und damit auch Potenziale zur Erhöhung der Wett-
bewerbsfähigkeit der (nieder)österreichischen Industrie noch ungenutzt sind. Hinzu kommt, dass die Materialkosten aufgrund einer über lange Jahre hinweg günstigen Rohstoffpreisentwicklung in den meisten Unternehmen nicht annähernd so stark wie die ständig zunehmenden Personalkosten optimiert wurden.

Aufgrund der internationalen Rohstoffpreisentwicklung ist dementsprechend zu erwarten, dass zukünftig neben den Lohnstückkosten in zunehmendem Maße auch die Materialstückkosten von ausschlaggebender Bedeutung für die preisliche Wettbewerbsfähigkeit (nieder)österreichischer Produkte sein werden.

Grundlage der (Effizienz-)Analyse waren die Kennzahlen Materialaufwand, Fremdleistungen und Vorräte (in % der Betriebsleistung) sowie die Materialeffizienz (hier gemessen als Quotient aus Rohertrag und Materialaufwand). Da Fremdleistungen den innerbetrieblichen Kostenmix beeinflussen können, wurde eine entsprechende Korrekturrechnung implementiert.
Zur Ermittlung der Liquiditätsbindung im Bereich der Materialwirtschaft erfolgte eine Auswertung der Vorräte in Relation zur Betriebsleistung. Bei dieser Variable gibt es in zu-mindest vier von sechs analysierten Branchen in Niederösterreich Handlungsbedarf. Wird der Wert der Vorräte in Bezug zur Betriebsleistung gesetzt, liegt der durchschnittliche Wert über alle Branchen in Niederösterreich innerhalb der Beobachtungsperiode von 1999 bis 2010 über dem nationalen Gegenstück. Zieht man den Materialaufwand als normierende Größe heran, so war während der Beobachtungsperiode das durch Vorräte gebundene Kapital in der Chemieindustrie in Österreich mit 27,5 % höher als in Niederösterreich 26,7 %. Dies trifft auch auf die Metallindustrie (Ö: 34,9 %, NÖ: 34,3) zu. Die übrigen Branchen verzeichneten eine höhere Liquiditätsbindung in Niederösterreich: Nahrungsmittel (14,8 %; 15,3 %), Holz (30,7 %; 31,5 %), Textilien (43,1 %; 44,3 %) und Maschinenbau (37,2 %; 43,5 %).

Aufgrund eines teilweise beträchtlichen Umfangs an Fremdleistungen erfolgte eine modifi zierte Berechnung des Materialaufwandes, der nicht nur den innerbetrieblichen Material einsatz, sondern auch den in Fremdleistungen beinhalteten Materialinput berücksichtigt und somit den gesamten endproduktbezogenen Materialaufwand erfasst. Die durchschnittliche Kennzahl im Untersuchungszeitraum liegt lediglich für die Branche Maschinenbau in Niederösterreich unter dem Vergleichswert Österreichs (Ö: 52,0 %, NÖ: 51,4 %). Alle übrigen untersuchten Branchen in Niederösterreich hatten einen höheren Materialaufwand: Holz (56,6 %; 57,3 %), Metall (48,3 %; 49,4 %), Nahrungsmittel (59,0 %; 61,0 %), Chemie (54,4 %; 56,5 %) und Textilien (51,5 %; 55,4 %).

Die Materialeffizienz als Quotient zwischen Rohertrag und Materialaufwand gibt Auskunft darüber, in welchem Verhältnis sich die Ausgaben für Material und die Erlöse reduzieren um die Materialkosten zueinander verhalten. Hier ist ein möglichst hoher Wert erstrebenswert, der im niederösterreichischen Durchschnitt (bezogen auf die Beobachtungsperiode) nur in der Branche Maschinenbau mit 0,949 höher als in Österreich 0,927 lag. Die folgenden niederösterreichischen Branchen liegen im nationalen Vergleich unterdurchschnittlich: Holz (Ö: 0,767; NÖ: 0,747), Metall (1,075; 1,032), Nahrungsmittel (0,696; 0,643), Chemie (0,842; 0,782) und Textilien (0,942; 0,812).

Den Abschluss der Studie bildet eine Reihe von Vorschlägen zur Förderung der Material effizienz insbesondere auf der Ebene der KMU. Dazu gehört unter anderem die Ausbildung von Materialberatern (eventuell in Form eines modifizierten Innovationsassistenten), die Unternehmen materialintensiver Kernbranchen Beratungsdienste im Hinblick auf eine Erhöhung der Materialeffizienz anbieten.
Insoweit hierzu eine stärkere (infra)strukturelle Vernetzung erforderlich ist, könnte eine Ausschreibung für die Koordination und das Management eines Materialeffizienz-Netzwerkes für bestimmte Branchen und die Bereitstellung von entsprechendem fachlichen Know-how in Betracht gezogen werden.

Für das Chemikalienmanagement wird ein Entwicklungsprogramm für Dienstleister angezeigt, die (ergänzend zu den Entsorgungs-Unternehmen) vorgelagertes Chemikalien-Management betreiben.

Die Entwicklung eines Internet-Tools zur Materialeffizienz dürfte die Kommunikation mit und zwischen KMU erleichtern.

Um die Thematik der Materialeffizienz in weiteren Teilen der Bevölkerung zu verankern, könnte neben einer Potenzialanalyse über alle Branchen hinweg auch eine allgemeine Informationskampagne zur Materialeffizienz in Betracht kommen.
11 Literatur

ADL (Little, A.D.) / Fraunhofer Institut für System- und Innovationsforschung / Wuppertal Institut für Klima, Umwelt, Energie (2005) „Studie zur Konzeption eines Programms für die Steigerung der Materialeffizienz in mittelständischen Unternehmen“, Abschlussbericht.

Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft (2011) „Indikatoren-Bericht für das Monitoring Nachhaltiger Entwicklung (MONE)“.

Kristof, K. und P. Hennicke (2010) „Materialeffizienz und Ressourcenschonung“ (MaRess) Projekt-Endbericht, Wuppertal Institut für Klima, Umwelt, Energie GmbH.

Statistik Austria (2007) „Materialflussrechnung, Inputreihe 1960-2005“.

Anhang: Beispiele von Internet-Tools

(1) Business Resource Intensity Index (BRIX)

Dieser Index wurde im Rahmen eines Projekts entwickelt, an dem verschiedene wissenschaftliche Institute und Unternehmen teilgenommen haben. Zu den wissenschaftlichen Partnern gehörten SERI, das Faktor 10 Institut, plenum, das ÖIN und das Wuppertal Institut für Klima, Umwelt, Energie. Unternehmenspartner waren die Lenzing AG, die Rhomberg Bau GmbH und die Grüne Erde GmbH.

Hauptziel des Projektes war es, einen ressourcenbasierten Index zu entwickeln, der es Unternehmen ermöglicht, den Ressourcenverbrauch und die Ökoeffizienz ihrer Standorte sowie ihrer Produkte und Dienstleistungen zu messen und zu optimieren.

Detaillierte Ziele des BRIX-Projekts: Harmonisierung verschiedener methodischer Ansätze, Verbesserung der Datenverfügbarkeit und Datenqualität, Integration verschiedener Methoden in einen Index (BRIX), Entwicklung eines computergestützten Berechnungstools (BRIX-Tool), Test und Implementierung des Tools in den drei Unternehmen.

Das BRIX-Tool kann anhand eines Beispiels mit eingeschränkter Funktionalität auf der Webseite des BRIX-Projekts getestet werden.

http://www.brix-index.net/

(2) Deutsche Materialeffizienzagentur: demea-Selbstcheck

Der Selbstcheck kann sowohl online als auch in einer Offline-Version verwendet werden.

http://www.materialeffizienz-selbstcheck.de/demea-selbstcheck